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Chapter 1

Introduction

In many engineering applications we choose to view the world (an unknown signal) through a
set of samples. Often, a relatively small number of samples tells us all we need to know. For
example, the classical Whittaker-Nyquist-Kotelnikov-Shannon sampling theorem states that
a continuous-time band-limited signal can be perfectly reconstructed from uniformly spaced
discrete samples provided that the sampling rate (number of samples per time) is greater
than twice the signal bandwidth. This fact is crucial to the analog-to-digital conversion in
signal processing and telecommunications.

For a more general notion of what it means to sample a signal, we may consider a variety
of interesting applications where the signals of interest are not band-limited. In fact, even
more can be said when we consider that sometimes the information we desire is not an
unknown signal per se, but rather some function of it. Examples from the past decade
include spectrum blind sampling (Bresler et al. [1, 2, 3]), sampling with a finite rate of
innovation (Vetterli et al [4]) and compressed sensing (Donoho [5] and Candes & Tao [6],
and many others).

In particular, the field of compressed sensing deals with the digital-to-digital sampling
of signals that are somehow compressible. For many such signals, the sampling processes
simultaneously senses (provides a set of samples sufficient to reconstruct an unknown signal)
and compresses (the number of samples is far less than the dimension of the original signal).

For a given sampling application, natural questions include: 1) how should the samples
be taken? 2) how many samples are required? 3) what fidelity is required to represent each
sample? and 4) how do we extract the desired information from the samples?

1.1 Our Contributions

In this thesis, we consider the sampling of discrete-time signals that are sparse, i.e. most of
the elements are zero. Such signals contain both discrete information (the support, i.e. the
indices of the non-zero components) as well as non-discrete information (the values of the
non-zero components). In applications such as signal estimation and compression the goal is
to recover the original signal under some mean squared error (MSE) distortion criterion. In
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applications such as model selection and regression the main concern is to correctly identify
the support.

We focus on a particular form of sampling, namely noisy linear projections, and address
questions about the number and quality of samples required. The fidelity of each sample is
measured by the per-sample signal-to-noise ratio (SNR), and we assume that the size of the
support scales linearly, as opposed to sub-linearly, with the dimension of the unknown signal.
We make the following contributions for the under-sampled large system setting where the
number of samples is less than the signal dimension, and the signal dimension becomes very
large:

• Perfect support recovery is hard: If the per-sample SNR does not increase with
the dimension of the signal, then exact recovery of the support is not possible. Previous
work has shown this to be the case for particular efficient sub-optimal reconstruction
algorithms. In Theorem 3.1 of Chapter 3, we show that it is also true for any possible
reconstruction algorithm.

• Fractional support recovery is not as hard: We introduce a notion of partial
support recovery and show that even if the per-sample SNR does not increase with the
dimension of the signal, it is still possible to guarantee recovery of some fraction of the
support. Chapter 2 describes our fractional distortion metric. Theorems 3.2 and 3.4 in
Chapter 3 give necessary conditions on the sampling rate and SNR required to recover
a given fraction of the support. Equivalently, these results may be seen as upper bound
on the fraction that can be recovered using any possible estimator. Theorem 4.1 in
Chapter 4 gives a complementary set of sufficient conditions for an ideal estimator that
uses exhaustive search.

• Stochastic versus worst-case analysis: Previous work on perfect support recovery
has used a worst-case analysis that requires a (lower) bound on the smallest non-
zero signal component. In this thesis, we consider both stochastic and non-stochastic
signal models. An advantage of considering signals with a distribution is that we
can give performance guarantees even when the smallest non-zero signal component is
arbitrarily small. The nature of these guarantees is made precise in Chapter 2 where we
define a notion of the SNR and reliable recovery for both stochastic and non-stocastic
signal classes. The results on partial support recovery in Chapters 3 and 4 depend only
on certain properties of the assumed signal class.

• Not all noise is the same: It is tempting to argue that noise added to the signal prior
to sampling can be “pushed through” the sampling process and equivalently considered
as noise added after the sampling process. We show that such a consideration is
inappropriate. Chapter 5 address the task of signal estimation under two different
noise models and Theorem 5.1 gives the corresponding asymptotic MSE distortions as
a function of the sampling rate and SNR.

We remark that our results represent fundamental (information-theoretic) limits. For
the task of support recovery, our necessary bounds hold for any possible estimator. At the
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same time, our achievable results correspond to an ideal estimator that performs exhaustive
search. Such an estimator is computationally expensive and thus a interesting extension of
this thesis is to find corresponding achievable results for an efficient estimator.

Also, we emphasize that Chapters 3 and 4 are concerned with sampling bonds for support
recovery whereas Chapter 5 compares different noise models on the task of signal estimation.
Since the tasks of support recovery and signal estimation are related, a natural question not
addressed in this thesis is what effect noise added prior to sampling has on the task of support
recovery.

The remainder of this introduction is as follows: Section 1.2 describes our general sam-
pling model, Section 1.4 gives a brief overview of previous work in this area, and Section 1.3
provides an example application in sensor networks.

1.2 General Sampling Model

Let x ∈ Rn be an unknown sparse signal. The observation model can be generally formulated
as a sampling problem where each “sample” consists of an inner product between x and some
predetermined measurement vector φi ∈ R

n and some random noise wi

yi = 〈φi, x〉 + wi for i = 1, · · · , m. (1.1)

We will collect our observations into a vector y = (y1, y2, · · · , ym)T and let w = (w1, w2, · · ·wm)T .
Then, the sampling is given in matrix form as

y = Φx + w, (1.2)

where Φ = [φ1, φ2, · · · , φn]T is an m × n sampling matrix. In the under-sampled setting
(m < n) the matrix Φ is not invertible, and thus general inference problems are challenging.

y

=

Φ x

+

w

Figure 1.1: The under-sampled setting
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The locations of the non-zero elements of x will be referred to as the support of x:

K = {i ∈ {1, · · ·n} s.t. xi 6= 0}, (1.3)

where k = |K| is the number of non-zero elements. The signal x is sparse if k is significantly
less than n. We use ΦK to denote the matrix formed by columns of Φ indexed by K and
xK to denote the vector formed by the elements of x indexed by K. Also, K⊥ denotes the
complement of the support and thus |K⊥| = n − k. If k < m, then the submatrix ΦK is
invertible. This is significant because it means that if we know the support K then our
observation model corresponds to an over-constrained set of linear equations. In general,
however, the support is considered to be unknown.

y

=

Φ x

+

w

Figure 1.2: The sparse under-sampled setting when the support K corresponds to the first
k elements of x (gray represents zero value)

1.3 A Sensor network application

To motivate the problem of sparse support recovery with finite (non-increasing) SNR we
provide the following sensor network example (variations can be found in [7, 8, 9]).

Imagine that there is some sparse phenomenon in our environment which may be modeled
as a sparse vector x ∈ Rn whose indices correspond to specific locations. We desire to locate
the phenomenon (i.e. identify the support of x) using a spatially distributed network of n
sensors. If the placement of the sensors corresponds to the locations indexed by x, then the
vector of sensor observations x̃ ∈ Rn will also be sparse. More generally, however, we may
assume that there is some known one-to-one linear transformation between x and the sensor
observations (represented by Ψ ∈ Rn×n), and so the observations x̃ = Ψx are in general
non-sparse.

To determine the support of x, it is clearly sufficient to collect the observations from all
n sensors. However, since power and bandwidth are likely to be scarce resources, it may be

12



a much better idea to use one of the procedures outlined in [7, 8, 9] to efficiently compute
m linear projections of the data x̃. Then, the data we receive from the network is of the
form y = ΦΨx + w where the noise w results from observation noise at each sensor, and
computation and communication across the network.

Under assumptions about x, we may pose recovery in terms of the SNR. As the problem
size n increases it is important that the size (in bits) of each sample remains constant.
Otherwise, the communication will ultimately overwhelm the network even if the ratio m/n
stays fixed. Our results are significant because they show that such a network can guarantee
recovery of a fixed fraction of the support with m ≪ n “network samples”.

x

n-dimensional
k-sparse signal

Ψ

observations
at n sensors

x̃

Φ
network

+

w
noise

x

m samples

Figure 1.3: Sparse signal sampling using a sensor network

1.4 Overview of Related Work

There is a rich literature on sparse signal reconstruction and support recovery. In this section
we present a summary of some of the relevant research with an emphasis on support recovery.

In the noiseless setting (w = 0) it has been shown that the support of any signal with
exactly k non-zero elements can be recovered from just m = k + 1 samples [1]. However,
such estimation is a lattice-decoding problem. Compressive sensing [10, 5, 6] has shown that
for a small increase in the number of noiseless samples, m = O(k log(n/k)), perfect recovery
can be achieved using an efficient algorithm (linear program) called Basis Pursuit.

In the presence of noise, perfect support recovery becomes more difficult. Compressive
sensing results [11, 12] show that for m = O(k log(n/k)) samples there exist efficient algo-
rithms (quadratic programs) which can provide an estimate x̂ that is stable, that is ||x̂− x||
is bounded with respect to ||w||. Clearly such estimation procedures must supply some in-
formation about the support but how much? A partial answer is provided by [13, 14, 15, 11]
where it is shown that it is possible to obtain an estimate x̂ whose support is contained
inside the support of x. However, no guarantees are given on the size of estimated support.

Taking a slightly different approach, the work of [16, 17, 18] has addressed the ability
of a particular ℓ1 constrained quadratic program, the Lasso, to guarantee perfect support
recovery in the large system setting (n → ∞). Results are formulated in terms of scaling
conditions for (n, k, m) and the magnitude of the smallest non-zero component of x denoted
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xmin. Most relevant to this thesis, is the work of Wainwright [18] which shows that in
the linear sparsity regime, if φi are i.i.d. N (0, 1

n
I) then both the sufficient and necessary

conditions for perfect recovery (using the Lasso) require that either m/n → ∞ or xmin → ∞.
Another line of research has considered information-theoretic bounds on the performance

of the optimal support estimator, also in the large system setting n → ∞ . Gastpar and
Bresler [3] developed a lower bound on the probability of perfect support recovery in the
case where {φi} correspond to m rows of the n×n Fourier matrix and the non-zero elements
of x are i.i.d Gaussian. For Gaussian Φ, Sarvotham et al. [19] have given an arbitrary rate-
distortion lower bound, and Fletcher et al. [20, 21] have studied the rate-distortion behavior
of the signal x. Also, recent work by Aeron et al. [22] has studied the information theoretic
properties of sensor networks for sparse signal recovery.

Finally, a major source of inspiration for this thesis comes from Wainwright [23] who
provided both lower and upper bounds on the number of samples in terms of the scaling
of (n, k, m) and xmin. In the linear sparsity setting, the conditions of the sufficient bound
are less stringent than in [18] but still require that either m/n → ∞ or that xmin → ∞.
As Wainwright points out, there is a significant gap between this achievable bound and the
corresponding necessary bound which is finite, namely m/n < 1, for a fixed value of xmin.
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Chapter 2

Problem Setup

This chapter defines three components of our sampling setup. Section 2.1 describes how the
samples will be taken. Section 2.2 address what is known, or assumed to be known about
the signal of interest prior to sampling and defines two particular signal classes. Section 2.3
addresses the information of interest when decoding the received signal, and describes two
related but different recovery tasks.

2.1 Specific Sampling Model

For x ∈ R
n we consider a linear observation model (introduced in Section 1.2) in which

samples y ∈ Rm are taken as

y = Φx + w, (2.1)

where Φ ∈ Rm×n is a sampling matrix and w ∈ Rm is noise. We assume that the x has
exactly k non-zero elements which are indexed by the support K, and that K is distributed
uniformly over the

(

n
k

)

possibilities.
We further assume that the sampling matrix Φ ∈ Rm×n is randomly constructed with

i.i.d. rows φi ∼ N (0, 1
n
I). This matrix construction is a common choice in the compressed

sensing literature, and we focus on it for two reasons. First, it also allows us to use powerful
asymptotic results for chi squared random variables (Appendix A) and certain well studied
random matrices (Appendix B) to develop our bounds.

The second reason for our choice of Φ is that its distribution is invariant to rotation.
That is, for any n × n orthonormal matrix Ψ, the matrix ΦΨ is equal in distribution to
Φ. The significance of this fact is that all our results also apply to the setting where the
observed signal is not sparse per se, but is sparse with respect to some known orthonormal
basis Ψ. Thus our sampling model extends to the more general setting

y = ΦΨx + w. (2.2)

This sampling model is crucial to many applications and is discussed in our examples of
sensor network applications in Sections 1.3 and 5.1. However, for the rest of this thesis we
find it convenient to describe our results in terms of sampling model (2.1).
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In our analysis of partial support recovery in Chapters 3 and 4 we assume that w ∼
N (0, σ2

wI). In our analysis of signal estimation in Chapter 5 we investigate what happens
if noise is added prior to sampling. Thus we compare two noise models: one in which
w ∼ N (0, σ2

wI) and one in which w ∼ N (0, σ2
wΦΦT ).

Our our goal is to understand to the asymptotic performance of the sampling model.
Hence, we assume that the size of the support k = kn and number of samples m = mn

depend on ambient dimension n and we see what happens as n → ∞. As mentioned in
Section 1.4 there are many interesting choices for the scalings of kn. We exclusively consider
the setting of linear sparsity where kn is a linear function of n. We are interested in which
sampling tasks can (and cannot) be solved in the under-sampled setting where mn < n. We
provide the following definitions.

Definition 2.1. The sparsity is Ωn = kn/n and the asymptotic sparsity is Ω = limn→∞ kn/n.
This parameter is a measure of the “bandwidth” of a signal, and linear sparsity corresponds
to 0 < Ω < 1.

Definition 2.2. The sampling density is ρn = mn/n and the asymptotic sampling density
is ρ = limn→∞ mn/n. In the under-sampled setting ρ < 1.

We find it convenient to consider a sampling matrix that preserves the magnitude of
x. Specifically, we choose to scale the variance of each element of rows φT

i as 1/n so that
E[〈φi, x〉2] = ||x||2/n, and we will consider signals whose average energy ||x||2/n does not
depend on n. We caution the reader that these choices are in contrast to some of the related
work [18, 23] where Φ is chosen such that E[〈φi, x〉2] = ||x||2 and hence Φ amplifies the signal
x.

2.2 Sparse Signal Classes

This thesis is concerned with sampling signals that are sparse. However, to make guarantees
on what can or cannot be achieved requires additional information about the class of the
unknown signal. Let X denote a class of sparse signals and let Xn denote the sub-class of
signals with length n. One of the most useful measures we need is the signal-to-noise ratio.

Definition 2.3. For a given signal x, the per-sample signal-to-noise ratio (SNR) is

SNR(x) =
E [||Φx||2]
E [||w||2] =

1

nσ2
w

||x||2. (2.3)

Although the above definition also refers to the total signal-to-noise ratio, we call it the
per-sample signal-to-noise ratio to emphasize that it is a property of the average signal and
noise energies and does not depend on the number of samples.

Performance guarantees will require good bounds on SNR(x), and the types of bounds
we can use depend on the assumed signal class X . In general we may want absolute bounds
which hold for all x ∈ Xn. For stochastic signal classes however, it may be advantageous (and
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necessary) to consider bounds which hold with some desired probability. Although a variety
of (potentially weaker) bounds could be considered, we will use the following definition in
our analysis.

Definition 2.4. For a given signal class X , SNR(X ) is an asymptotic lower bound on SNR(x).
If X is non-stochastic then the bound must satisfy

SNR(X ) ≤ SNR(x) for all x ∈ X . (2.4)

If X is stochastic then there must exist some constant c > 0 such that

P {SNR(Xn) ≤ SNR(x)} > 1 − e−n c (2.5)

Two other useful measures are the following.

Definition 2.5. For a given signal class X , the relative size of the smallest non-zero element
of x is characterized by βL(X ). If X is non-stochastic then

βL(X ) = lim
n→∞

inf
x∈X

inf
i∈K

x2
i /σ

2
w (2.6)

If X is stochastic then βL(X ) is a probabilistic upper bound and there must exist some
constant c > 0 such that

P
{

min
i∈K

x2
i /σ

2
w ≤ βL(Xn)

}

> 1 − e−n c (2.7)

Definition 2.6. For a given stochastic signal class X with E(x) = 0 and E[x2] = σ2
x, the

normalized per-sample signal-to-noise ratio is given by β(X ) = σ2
x/σ

2
w such that E[SNR(x)] =

Ωβ(X ).

In general a wide variety of signal classes may be considered. In the following sections
we introduce two example classes, one stochastic and one non-stochastic.

2.2.1 Non-stochastic Bounded Signals

Often it is appealing to have models that do not assume a distribution. Such models may
arise naturally when we need a worst-case analysis. Also, resulting claims are robust in that
they do not depend on the choice or parameters of an assumed distribution. Previous work
on support recovery [16, 17, 18] has focused on the following class.

Definition 2.7. Bn is the set of all x ∈ Rn whose non-zero elements are bounded from below
in magnitude, that is |xi| ≥ xmin for all i ∈ K where xmin is a known constant that does not
depend n.

For the class B it is clear that βL(B) = x2
min/σ

2
w and SNR(B) = ΩβL.

17



2.2.2 Gaussian Signals

In this thesis, we also consider the class of Gaussian signals which is ubiquitous in information
theory, signal processing, and communications.

Definition 2.8. Let Gn be the set of all x ∈ Rn whose non-zero elements are Gaussian, that
is xi are i.i.d. N (0, σ2

x) for all i ∈ K.

Since any “non-zero” element of x can be arbitrarily close to zero, support recovery
becomes more difficult than when there is a fixed bound on xmin. We note that SNR(x)
is a random variable that obeys concentration of measure. Using standard large deviation
bounds for χ2 variables (Lemma A.1) we see that for any ǫ > 0 we may choose SNR(Gn) =
(1 − ǫ/n)Ωnβ(Gn) where β(Gn) = σ2

x/σ
2
w . For simplicity we will use the limit SNR(G) =

SNR(G∞) = Ωβ(G). Also, we may trivially choose βL(G) = β(G) although much tighter
bounds are possible.

2.3 Recovery Tasks

Generally stated, the goal of sampling is to recover some function of the unknown signal
to within some desired distortion. In the following sections we look at two different types
of tasks, signal estimation and support recovery, and propose corresponding distortion mea-
sures.

2.3.1 Support Recovery

Given the true support K and any estimate K̂ there are several natural measures for the
distortion d(K, K̂). One may consider recovery of K as a target recognition problem where
for each index i ∈ {1, · · · , n} we want to determine whether or not i is in the support K.

At one extreme, minimization of

d′(K, K̂) =

{

|K| − |K̂| K̂ ⊆ K

∞ K̂ ⊃ K

attempts to find the largest subset K̂ that is contained in K. The results of [13, 14, 15, 11]
can be interpreted in terms of this metric. Roughly speaking, their results guarantee that
d′(K̂, K) ≤ |K| but cannot say much more because no guarantees are given on the size K̂.

At the other extreme, minimization of

d′′(K, K̂) =

{

∞ K̂ ⊂ K

|K̂| − |K| K̂ ⊇ K

attempts to find the smallest subset K̂ that contains the true support, and in general one
may formulate a Neyman-Pearson style tradeoff between the two types of errors.
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Our focus is on reconstruction at the point where the number of false positives is equal
to the number of false negatives. Since we assume that |K| is known a priori, we can impose
this condition by requiring that |K̂| = |K|. Accordingly, we use the following metric which
is proportional (by a factor of two) to the total number of errors

d(K, K̂) =

{

|K| − |K ∩ K̂| |K̂| = |K|
∞ |K̂| 6= |K|

For the remainder of this thesis we consider only candidate supports K̂ that are the same
size as the true support.

d′

K

K̂

d

K K̂

d′′

K̂

K

Figure 2.1: Possible distortion metrics

We can define partial recovery as the requirement that d(K, K̂) ≤ a∗ for some a∗ ≥ 0. If
we consider a∗ to be a function of n then there are several interesting choices for the scaling
of a∗

n. For instance, if recovery is possible with a∗
n = O(log n) then as n → ∞ the average

distortion 1
kn

d(K, K̂) → 0 although the allowable number of errors d(K, K̂) → ∞. Our
results, however, pertain to linear scalings between a∗

n and kn.

Definition 2.9. The fractional distortion is α ≥ 0, and fractional partial recovery is the
requirement that d(K, K̂) ≤ a∗

n where a∗
n = α kn.

The requirement α = 0 corresponds to perfect recovery whereas the requirement α = 1
is always satisfied (since we assume |K̂| = |K|).

Our analysis will use the following definitions to characterize the performance of an
estimator K̂(y) with respect to fractional partial recovery. Recall that y is a function of x
and thus the performance depends on X .

Definition 2.10. Let K̂(y) be an estimator of K. If Xn is non-stochastic, then

Pe(α,Xn) = max
x∈Xn

P

{

d(K, K̂(y)) > α k
}

(2.8)

where the probability is over w, and Φ. If Xn is stochastic, then

Pe(α,Xn) = P

{

d(K, K̂(y)) > α k
}

(2.9)

where the probability is over x, w, and Φ.

19



Definition 2.11. An estimator K̂(y) is said to be asymptotically reliable for a class X if
there exists some constant c > 0 such that Pe(α,Xn) < e−n c.

Definition 2.12. An estimator K̂(y) is said to be asymptotically unreliable for a class X if
there exists some constant c > 0 and integer N such that Pe(α,Xn) > c for all n ≥ N .

We remark that a weaker notation of reliable recovery is to constrain the expected distor-
tion, that is to require that EK [d(K, K̂(y))] ≤ α k. Although such a statement means that
on average the fractional distortion is less than α, it is still possible that a linear fraction of
all possible supports have resulting distortion greater than α. Our notion of asymptotically
reliable recovery implies more. It says that although there may be a set of “bad” supports
with resulting distortion greater than α, the size of this set very small relative to the total
number of possible supports.

For a baseline performance measure, we consider an estimator K̂RG which randomly
guesses a subset of size k independent of the data. It is clear that E[d(K, K̂RG)] = (1− Ω)k
which corresponds to a fraction distortion of α = 1 − Ω. Moreover, this value is a sharp
threshold as is seen by the following lemma.

Lemma 2.1. The random guessing estimator K̂RG is asymptotically reliable for any α >
1 − Ω and asymptotically unreliable for any α < 1 − Ω.

Proof. This follows from an extension of Hoeffding’s Inequality. This particular problem,
which corresponds to sampling without replacement, is addressed by Hoeffding [24].

The significance of Lemma 2.1 is that no samples are needed to guarantee any fraction
distortional α > 1 − Ω. Accordingly, this thesis focuses on support reconstruction for α ∈
[0, 1 − Ω].

2.3.2 Signal Estimation

A common distortion measure for signal estimation is the mean squared error (MSE). For
simplicity we consider the normalized mean squared error, ||x − x̂||2/||x||2, and define the
following metric.

Definition 2.13. Let x̂(y) be an estimator of x. If Xn is non-stochastic, then

D(Xn) = max
x∈Xn

E[||x̂(y) − x||2]
||x||2 , (2.10)

where the expectation is over w, and φ. If Xn is stochastic, then

D(Xn) =
E[||x̂(y) − x||2]

E[||x||2] , (2.11)

where the probability is over x, w, and φ.
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Chapter 3

Support Recovery: Necessary

Conditions

This chapter deals with fundamental limits on support recovery. For the sampling model
described in Chapter 2, we give necessary conditions on the number and quality of samples
needed to recover a given fraction of the support. In Section 3.1.1 we show that perfect
recovery is not possible unless the SNR increases without bound with dimension n. This
means that as n becomes large, either the noise must disappear or the magnitude of each
non-zero element of x must increase without bound. In Section 3.1.2 we give an upper
bound on fraction of the support that can be recovered for a fixed SNR. Section 3.2 provides
discussion, and proofs are given in Section 3.3.

3.1 Results

Our results come in two flavors. The bound on perfect recovery in Section 3.1.1 is a sufficient
condition for any estimator to be asymptotically unreliable. The bounds on partial recovery
in Section 3.1.2 give necessary conditions any estimator to be asymptotically reliable.

3.1.1 Perfect Recovery

In the paper [23], Wainwright gives sufficient and necessary conditions for perfect support
recovery. With respect to our sampling model, the sufficient conditions require βL(X ) = ∞
whereas the necessary conditions are satisfied with βL(X ) < ∞. In the following theorem we
show that βL(X ) < ∞ is a sufficient condition for asymptotically unreliable recovery, and
thus βL(X ) = ∞ is a necessary condition for asymptotically reliable recovery.

Theorem 3.1. For a given signal class X , sparsity Ω ∈ (0, 1), and sampling rate ρ < 1,
consider the task of perfect support recovery, i.e. the fractional distortion α = 0. If βL(X ) <
∞ then any estimator K̂(y) is asymptotically unreliable
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We we remark that Theorem 3.1 is very general in that it depends only on the behavior
of the smallest non-zero element of x. This means that perfect recovery is not possible unless
the per-sample SNR grows without bound with n.

To see why this result makes sense we consider an observation model with m = n and
Φ̃ = In such that y = x + w. In this case, it is clear that there will always be some positive
probability of error. Our result shows that the same is true when we observe y = Φx + w
for m ≤ n and Φ Gaussian.

3.1.2 Partial Recovery

The bounds in this section are information-theortic in nature. The following definitions
allow us to characterize the number bits needed to describe the support K to within a
desired fractional distortion α.

Definition 3.1. For p ∈ [0, 1] the function h(p) = −p log(p)+(1−p) log(1−p) is the binary
entropy function.

Definition 3.2. For p ∈ [0, 1] and u ∈ [0, 1 − p] we define

h(Ω, α) = Ωh(α) + (1 − Ω)h

(

α

1/Ω − 1

)

(3.1)

Let Kn(a) = {U : d(K, U) = a} be the set of supports with distortion equal to a. Using
the fact [25] that log

(

n
k

)

= n h(k/n) + O(log n) gives

1

n
log |Kn(α Ω n)| → h(Ω, α) as n → ∞.

Hence, the asymptotic bit rate required to encode the support K to within fractional dis-
tortion α is given by h(Ω) − h(Ω, α). Note that at α = 1 − Ω this quantity is zero. This
corresponds to Lemma 2.1 which shows that 1 − Ω is a natural upper bound on α.

In the following theorems we essentially plug our rate-distortion function (i.e. the neces-
sary bit rate h(Ω) − h(Ω, α)) into known bounds. The first result applies to general signal
classes.

Theorem 3.2. For a given signal class X , sparsity Ω ∈ (0, 1), sampling rate ρ < 1, and
fractional distortion α ∈ (0, 1−Ω), a necessary condition for asymptotically reliable recovery
is

ρ >
h(Ω) − h(Ω, α)

1
2
log
(

1 + SNR(X )
) . (3.2)

This bound uses a straightforward application of the data processing inequality and has
been previously observed in [19] in terms of some general rate-distortion function. Because
the only dependence on the signal class X is in the SNR, this bound is general and works
for both stochastic and non-stochastic classes.
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The drawback of Theorem 3.2 is that the bound is very loose. In the paper [3], Gastpar
and Bresler analyze a sampling model where the sampling matrix corresponds to m rows of
the n×n Fourier matrix and develop a tighter bound for stochastic signals. This bound can
be extended to our sampling matrix and is given below.

Theorem 3.3. For a given stochastic signal class X , sparsity Ω ∈ (0, 1), sampling rate
ρ < 1, and fractional distortion α ∈ (0, 1 − Ω), a necessary condition for asymptotically
reliable recovery is

ρ >
h(Ω) − h(Ω, α) + 1

n
I(x; y|K)

1
2
log
(

1 + SNR(X )
) (3.3)

where I(x; y|K) is mutual information between x and y conditioned on K.

Notice that Theorem 3.2 follows immediately from Theorem 3.3 and the non-negativity
of mutual information. Hence, the sampling density bound in Theorem 3.3 is greater than
or equal to the bound in in Theorem 3.2. However, the conditional mutual information is
difficult to compute in general. For the special case of the Gaussian signal class we derive a
closed-form expression of Theorem 3.3.

Theorem 3.4. For the Gaussian signal class G, sparsity Ω ∈ (0, 1), sampling rate ρ < 1,
and fractional distortion α ∈ (0, 1 − Ω), a necessary condition for asymptotically reliable
recovery is

ρ >
h(Ω) − h(Ω, α) + ρVWS(SNR(G); ρ/Ω)

1
2
log
(

1 + SNR(G)
) (3.4)

where the function VWS(γ; r) is given in Lemma B.3.

3.2 Discussion

The bound in Theorem 3.2 is shown in Figure 3.1 as a function of α for SNR(X ) = 100
and various Ω. The strength of this bound is that it applies generally to all signal classes.
However, it is likely to be overly conservative for stochastic signal classes. For the Gaussian
signal class, the bound in Theorem 3.4 is shown in Figure 3.2 as a function of α for SNR(G) =
105 and various Ω. Our intuition suggests that support recovery is more difficult for the
Gaussian class than for the bounded classes. This difference is supported by the results
where we see that the necessary sampling bound in Figure 3.2 is higher than in Figure 3.1
even though the SNR is much larger for the Gaussian bound.

In light of Theorem 3.1, which states that asymptotically reliable recovery cannot be
achieved with ρ < 1 and SNR < ∞, we see that both Theorems 3.2 and 3.4 are overly
conservative at α = 0. What is not clear, is how the true performance limit behaves as α
becomes very small.
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Figure 3.1: Necessary sampling density ρ as a function of the fractional distortion α for
various Ω for any signal class.
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Figure 3.2: Necessary sampling density ρ as a function of the fractional distortion α for
various Ω for the class of Gaussian signals.
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3.3 Proofs

3.3.1 Proof of Theorem 3.1

In this proof we consider a modified problem in which the estimator has access to additional
information about x. In this setting we analyze the optimal estimator K̂∗ and show that,
for the task of perfect recovery, K̂∗ is asymptotically unreliable. Since K̂∗ can perform no
worse than any estimator in the unmodified problem, this proves our desired result.

For a given signal x, let i0 = arg mini∈K |xi|. Now, imagine that the decoder knows the
signal xK and the set K1 = K\i0, that is every element of the support except for i0. Hence,
all that remains is to determine which of the remaining n−k +1 indices belongs in K. Note
that y − ΦK0

xK0
∼ N (xi0ai, σ

2
wI) and thus the MAP estimate of i0 is given by

î0 = arg min
j∈K⊥

1

||y − ΦK1
xK1

− xi0aj ||2

= arg min
j∈K⊥

1

||w + xi0ai0 − xi0aj ||2

For this decoder, an error occurs if there exists j ∈ K⊥ such that

||w + xi0ai0 − xi0aj ||2 < ||w||2.
Let βL = x2

i0/σ
2
w. By multiplying both sides of the above equation by n/x2

i0 we see that
the probability of error is equal to the probablity of the following event

min
1≤j≤n−k

||Q + X0 + Xj ||2 < ||Q||2 (3.5)

where Q ∼ N (0, m
ρ βL

Im) and Xi ∼ N (0, Im) independently for all i.
To bound this probability we define the following events

A1 =

{

1

2
m ≤ ||X0||2 ≤ 2m

}

∩
{

1

2

m2

β ρ
≤ ||Q||2 ≤ 2

m2

β ρ

}

,

A2 =
{

QT X0 < 0
}

.

Using large deviations bound for central χ2 variables (Lemma A.1) we have P{A1} ≥ 1−e−c1n

for some c1 > 0. Further we note that P{A2|A1} = 1/2. Hence we can bound the event
A = A1 ∩ A2 as

P{A} = P{A1}P{A2|A1} ≥ (1/2)(1 − e−c1n) (3.6)

Note that ||Q + X0||2 = ||Q||2 + ||X0||2 + 2QT X0 and thus the event A places a bound on
the relative difference between ||Q + X0||2 and ||Q||2.

Lemma A.3 says that the cumulative distribution function of a non-central χ2
NC variable

is decreasing in the non-centrality parameter. Using this fact and conditioning on A gives
the following bound for all j = 1, · · · , n − k

P
{

||Q + X0 + Xj||2 < ||Q||2
∣

∣ A
}

≥ min
t∈[1/2,2]

P

{

χ2
NC

(

m, 2m +
m2

β ρ
t

)

<
m2

β ρ
t

}

= P
{

χ2
NC

(

m, 2m + γ2m
2
)

< γ2m
2
}
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where γ2 correspond to the minimizing value of t.
For a given signal class X we have βL ≤ βL(X ) where the bound is tight for non-stochastic

classes and holds with exponentially high probability in n for stochastic signal classes. By
the assumptions βL(X ) < ∞ and ρ < 1 we have γ2 > 0. Also, since the probability of error
only increases as βL becomes small, it is sufficient to consider βL > 0 for all n. In this case,
we have γ2 < ∞.

Let Zj be i.i.d. χ2
NC (m, 2m + γ2m

2) and let fZ(z) denote its probability density. We
now use Lemma A.4 which gives a lower bound on fZ(z). Specifically, given some finite
constant τ > 0, there exists some constant c > 0 and integer M < ∞ such that

fZ(z) ≥ c

m

for all m ≥ M and z ∈ [γ2m
2 − τ m, γ2m

2]. This means that

P
{

Zj ≤ γ2m
2
}

=

∫ γ2m2

−∞

fZ(z)dz

≥
∫ γ2m2

γ2m2−τm

c

m
dz

= τc > 0

Hence, the total probability of error is bounded by

P

{

min
1≤j≤n−k

||Q + X0 + Xj||2 < ||Q||2
}

≥ P{A}P

{

min
1≤j≤n−k

||Q + X0 + Xj ||2 < ||Q||2
∣

∣ A

}

≥ P{A}P

{

min
1≤j≤n−k

Zj < γ2m
2

}

= P{A}
[

1 − P
{

Zj ≥ γ2m
2
}n−k

]

≥ P{A}
[

1 −
(

1 − P
{

Zj < γ2m
2
})n−k

]

≥ P{A}
[

1 − (1 − τc)n−k
]

and we see that the estimator is asymptotically unreliable.

3.3.2 Proof of Theorems 3.2, 3.3, and 3.4

We begin with the proof of Theorem 3.3 which implies Theorem 3.2. This proof is given in
the paper [3] for the Gaussian signal class X , the task of perfect recovery, and the case where
Φ corresponds to m rows of the n × n Fourier matrix. We give the proof here for general
signal class X , the task of partial recovery, and in terms of our Gaussian sampling matrix Φ.
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We define s = xK and note that the pair (K, s) is equivalent to x. Also, we define
z = Φx to be the noiseless version of the samples. Finally, we use standard definitions from
information theory [25].

The data processing inequality gives

I(z; y) ≥ I(s, K; y),

and the chain rule for mutual information gives

I(s, K; y) = I(K; y) + I(s; y|K).

Thus we have

I(z; y) ≥ I(K; y) + I(s; y|K).

Since the noise w is i.i.d. Gaussian, and the signal-to-noise ratio between z and y = z + w
is given by SNR(X ), we see that an upper bound for the information I(z; y) is given by the
channel capacity of an additive white Gaussian noise channel. Thus,

I(z; y) ≤ m
1

2
log(1 + SNR(X )).

Next, we consider how much information is required between K and y. Given that K
is uniformly distributed over the

(

n
k

)

possibilities, a simple counting argument and the fact
that log

(

n
k

)

= n h(k/n) + O(log n) shows that the asymptotic number of bits we need to
decode K to within accuracy α is given by n h(Ω) − n h(Ω, α). Using Fano’s inequality, we
see that Pe(α) > 0 unless

I(K; y) ≥ n h(Ω) − n h(Ω, α)

Putting everything together gives the necessary condition of Theorem 3.3

m ≥ n h(Ω) − n h(Ω, α) + I(s; y|K)
1
2
log(1 + SNR(X ))

Now, the simplified bound in Theorem 3.2 follows from the fact that I(s; y|K) ≥ 0.
For stochastic signal classes, however it may be possible to give a positive lower bound to
I(s; y|K). For the Gaussian class G, Gastpar [3] showed that

I(s; y|K = U) =
1

2
log det

(

Ik + SNR(G)
n

k
ΦT

UΦU

)

,

and thus

I(s; y|K) = EKI(s; y|K = U) =
1

2
EK log det

(

Ik + SNR(G)
n

k
ΦT

KΦK

)

.

For a given sampling matrix, such as random rows of the Fourier matrix, this information
may be difficult to compute. However, for our sampling matrix Φ we can derive a closed
form solution using facts from Appendix B and the following lemma.
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Lemma 3.1. For a nonnegative definite matrix M ∈ B
n×n let λ1(M), · · ·λn(M) denote the

eigenvalues of M and let F n
M (x) denote the empirical eigenvalue distribution (B.1). For

γ ≥ 0 we have

1

n
log det(I + γM) =

n
∑

i=1

1

n
log det(I + γλi(M))

=

∫ ∞

0

log(1 + γx)d F n
M(x)

Proof. This follows from the properties of the determinant.

As is shown in Appendix B, the matrix ΦT
KΦK is a Wishart Matrix for all K. By the

Marcenko-Pastur law [26], the empirical probability distribution of eigenvalues of this matrix
converge to a non-random continuous function as n → ∞. This function is given in Lemma
B.1. This also means that I(s; y|K = U) converges to a value that does not depend on
U . This quantity is given by the so-called Shannon transform VWS(γ; r) in Lemma B.3. To
conclude we have,

1

n
I(s; y|K = U) → ρVWS(SNR(G); ρ/Ω) (3.7)

for all U as n → ∞.
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Chapter 4

Support Recovery: Sufficient

Conditions

This chapter deals with what can be achieved in support recovery. For the sampling model
described in Chapter 2, we give sufficient conditions on the number and quality of samples
needed to recover a given fraction of the support. These results are complementary to the
necessary conditions given in Chapter 3. The bounds correspond to the performance of
a maximum likelihood (ML) estimator that performs an exhaustive search over all possible
supports. This estimator is described in Section 4.1. The results, which are stated in Section
4.2 and discussed in Section 4.3, show that ML estimator can guarantee some fraction of
the support. If this fraction is not too close to one, then only a modest sampling rate is
sufficient. However, in accordance with the results of Chapter 3, no guarantees can be made
as the desired fraction becomes close to one. Proofs are given in section Section 4.4

4.1 ML Support Estimation

We consider an ideal decoding algorithm which has knowledge of the sparsity parameter
k and, given the samples y, performs an exhaustive search over all candidate supports U
with size k to determine the most likely estimate of K. Further, our analysis focuses on
an estimator that is independent of the signal class X and assumes that all k-sparse signals
x ∈ Rn are equally likely.

Definition 4.1. The ML estimator K̂ML(y) is given by

K̂ML(y) = arg max
|U |=k

max
z∈Rk

P{y|K = U, xK = z} (4.1)

This is the same estimator studied (for the special case of α = 0) in Wainwright [23]
for the bounded signal class. The following result provides as an equivalent form of the ML
estimate.
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Lemma 4.1. The ML estimator is given by

K̂ML(y) = arg min
|U |=k

min
z∈Rk

||y − ΦUz||2 (4.2)

= arg min
|U |=k

||[Im − ΦU(ΦT
UΦU )−1ΦT

U ]y||2. (4.3)

Proof. The follows from our definition of the ML estimate and is shown in the paper [23].

The ML estimator is not optimal because it ignores information about X . However we
study it for several reasons. First, the ML decoder can be seen as a universal decoder that
is appropriate for cases in which we have incomplete or non-existent knowledge of X . For
instance, the implementation of ML decoder does not depend on the value of β or βL. Second,
for many signal classes, the difference between the optimal and ML estimates decreases as
the SNR becomes large. Finally, as is shown in Lemma 4.1, the ML decoder can be written
in terms of orthogonal projections of y which is a formulation that simplifies our analysis.

We remark that ML decoding is computationally hard for any problem of non-trivial
size. However, the resulting achievable bound is interesting because it allows us to see where
there is potential for improvement in current sub-optimal recovery algorithms. Furthermore,
if one is able to lower bound the performance of some efficient estimator with respect to the
optimal decoder, then an achievable result is automatically attained.

For completeness we also provide the maximum a posteriori (MAP) estimator for the
Gaussian signal class.

Lemma 4.2. For the signal class G, the MAP estimator is given by

K̂MAP(y,G) = arg min
|U |=k

min
z∈Rk

||y − ΦUz||2 + 1
β
||z||2 (4.4)

= arg min
|U |=k

||[Im − ΦU(ΦT
UΦU + 1

β
I)−1ΦT

U ] y||2. (4.5)

Proof. This follows from the definition of a MAP estimate for Gaussian variables.

4.2 Results

Intuitively, the components of xK with the smallest magnitudes are the most likely to be left
out of the estimated support. Our achievable bound relies on the total magnitude of all the
missed components of xK . Accordingly we introduce the following term which is a function
of x.

Definition 4.2. Let s ∈ Rk correspond to the non-zero elements of x. Assume that s is
indexed such that |s1| ≤ |s2| ≤ · · · ≤ |sk|. Then, for some α ≤ 1, the normalized magnitude
of the smallest a = ⌈α k⌉ elements of s is

g(α, x) =
1

α||x||2
a
∑

i=1

s2
i (4.6)
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As we saw before with the SNR, we need a bound on g(α, x) that holds for a given signal
class X .

Definition 4.3. For a given signal class X , g(α,X ) is an asymptotic lower bound on g(α, x).
If X is non-stochastic then the bound must satisfy

g(α,X ) ≤ g(α, x) for all x ∈ X . (4.7)

If X is stochastic then there must exist some constant c > 0 such that

P {g(α,Xn) ≤ g(α, x)} > 1 − e−n c (4.8)

For the bounded class, it is clear that we may choose g(α,B) = 1. For the Gaussian
class, a suitable choice is provided by the following lemma which is proved in 4.4.3.

Lemma 4.3. For the Gaussian signal class G we may choose

g(α,G) = −W
(

−e−(2/α)h(α)−1
)

> e−(2/α)h(α)−1 > α2/e3 (4.9)

where the Lambert-W function W (z) is the inverse function of f(z) = z ez.

Remarkably, the bounds SNR(X ) and g(α,X ) tell us all we need to know about the
signal class X for our achievable bound. We now state our main theorem which gives a set
of sufficient conditions for asymptotically reliable recovery using the ML estimator.

Theorem 4.1. For a given signal class X , sparsity Ω ∈ (0, 1), sampling rate ρ < 1,
and fractional distortion α ∈ (0, 1 − Ω), the estimator K̂ML(y) is asymptotically reliable
if SNR(X ) > 1/(αg(α,X )) and

ρ > Ω + max
u∈[α,1−Ω]

2 h(Ω, u)

log
(

SNR(X ) u g(u,X )
)

+
(

SNR(X ) u g(u,X )
)−1 − 1

(4.10)

where the function g(u,X ) satisfies definition 4.3, and h(Ω, u) is given by (3.1).

In the following corollaries, we provided a simplified, and necessarily weaker set of suf-
ficient conditions for the bounded and Gaussian signal classes. These corollaries make it
easier to see the approximate scaling behavior of the bounds.

Corollary 4.1. For the bounded signal class B, sparsity Ω ∈ (0, 1), sampling rate ρ < 1,
and fractional distortion α ∈ (0, 1 − Ω), the estimator K̂ML(y) is asymptotically reliable if
SNR(B) > e/α and

ρ > Ω +
2 h(Ω)

log
(

SNR(B) α/e
) . (4.11)
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Corollary 4.2. For the Gaussian signal class G, sparsity Ω ∈ (0, 1), sampling rate ρ < 1,
and fractional distortion α ∈ (0, 1 − Ω), the estimator K̂ML(y) is asymptotically reliable if
SNR(G) > e4/α3 and

ρ > Ω +
2 h(Ω)

log
(

SNR(G) α3/e4
) . (4.12)

In the following corollary we consider a specific relationship between the density and the
sparsity and show how the upper bound on the fractional distortion depends on the SNR.

Corollary 4.3 (Achievable Distortion). Let the sampling density be given by ρ = Ω+2h(Ω).
With exponentially high probability in n, the fractional distortion of the estimator K̂ML(y)
obeys

α < e2/SNR(B) (4.13)

for the bounded signal class and

α < (e2/SNR(G))1/3 (4.14)

for the Gaussian class.

4.3 Discussion

In this section, we discuss the implications of Theorem 4.1 for the bounded and Gaussian
signal classes. Figures 4.1 and 4.2 (log scale) show the sufficient sampling bound as a function
of α for various Ω for the bounded signal class with SNR = 100. Figures 4.3 and 4.4 (log
scale) show the sufficient sampling bound as a function of α for various Ω for the Gaussian
signal class with SNR = 105. Also shown, are the corresponding lower bounds from Chapter
3.

For both signal classes, we see that recovery in the under-sampled setting with fixed
SNR is possible over a range of α. However, as α becomes small, the sampling rate increases
without bound. This confirms our results from Chapter 3 which indicate that perfect recovery
in the presence of noise is very challenging. At the same time, it shows that if we accept a
small fraction of errors, reasonable results can be attained. Also, from Figures 4.2 and 4.4
we see that the upper and lower bond are reasonably tight for values of α that are not near
0 or 1 − Ω.

We may also consider non-asymptotic results. By paying attention to the exact error
exponents we can give a bound on the probability of error for fixed n. In Table 4.1 we show
the sufficient conditions to recover 99.9% of the support when n = 10, 000 and xK is bounded
from below. For example, when k = 200 and m = 522 the probability that the support is
not perfectly recovered is less than 0.0001. In Table 4.2, we show sufficient conditions to
recover 90% of the support when n = 10, 000 and xK is Gaussian. In this setting we see that
a high SNR is required, but that reliable recovery can be performed with very few samples.
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Figure 4.1: Sufficient (bold) and necessary (light) sampling densities ρ as a function of the
fractional distortion α for various Ω for the class of bounded signals.
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Figure 4.2: Sufficient (bold) and necessary (light) sampling densities ρ (Log scale) as a
function of the fractional distortion α for various Ω for the class of bounded signals.
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Figure 4.3: Sufficient (bold) and necessary (light) sampling densities ρ as a function of the
fractional distortion α for various Ω for the class of Gaussian signals.
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Figure 4.4: Sufficient (bold) and necessary (light) sampling densities ρ (log scale) as a
function of the fractional distortion α for various Ω for the class of Gaussian signals.
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Table 4.1: Sufficient number of samples to recover 99.9% of the support when n = 10,000
and x is bounded.

k βL Pe(10−3) m

200 105 1.00% 514
0.10% 518
0.01% 522

500 105 1.00% 1,050
0.10% 1,055
0.01% 1,060

Table 4.2: Sufficient number of samples to recover 90% of the support when n = 10,000 and
x is Gaussian

k β Pe(0.1) m

200 108 1.00% 346
0.10% 362
0.01% 381

500 107 1.00% 978
0.10% 1,009
0.01% 1,042

4.4 Proofs

4.4.1 Proof of Theorem 4.1

The main technical result underlying the proof is the following lemma which relates the
desired error probability, Pe(α), to the large deviations behavior of multiple independent
chi-squared variables. The proof of this lemma is given in Section 4.4.2.

Lemma 4.4. For given parameters (n, k, m, α) and signal class Xn, let g(u,Xn) satisfy def-
inition 4.3 with error exponent c0 > 0 for all u ∈ [α, 1 − k/n]. Then, for any scalar t > 0

Pe(α) ≤ P{χ2(m − k) > t} (4.15)

+

⌈k2/n⌉
∑

a=⌊αk⌋

[(

k

a

)(

n − k

a

)

P
{

χ2(m − k) < τ(a) t
}

+ e−n c0

]

where τ(a) =
[

SNR(X )(a/k)g(a/k,X )
]−1

.

We proceed by using large deviation bounds and the union bound to lower bound the
error exponents of the terms on the right hand side of (4.15). We then determine conditions
such that the exponents are positive.
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First, for any ν > 0 we may choose tν = (1 + ν)(m − k). By the upper concentration
bound in Lemma A.1 we have

−1

n
log
(

P(χ2(m − k) > tν)
)

≤ E1

where E1 = (ρ − Ω)ν2/4 is positive for all ρ > Ω.

Next, we consider the remaining term in (4.15) evaluated with tν for ν arbitrarily close
to zero. To use the lower concentration bound in Lemma A.1 requires

SNR(X ) > max
u∈[α,1−Ω]

1

u g(u,X )
=

1

α g(α,X )
.

If this inequality is satisfied, then

−1

n
log
(

P
{

χ2(m − k) < τ(a) t
})

≤ E2(a)

where

E2(a) = (ρ − Ω)
1

2

[

log
(

SNR(X )(a/k)g(a/k,X )
)

+
(

SNR(X )(a/k)g(a/k,X )
)−1 − 1

]

Finally, we note that log
(

k
a

)(

n−k
a

)

→ n h(Ω, a/k) as n → ∞, where h(Ω, α) is given by (3.1).

Putting everything together gives

Pe(α) ≤ e−n E1 +

⌈k2/n⌉
∑

a=⌊αk⌋

[

e−n
(

E(a)−h(Ω,a/k)
)

+ e−n c0
]

< e−n E1 + max
αk≤a≤(1−Ω)k

e−n
(

E(a)−h(Ω,a/k)
)

+log k + e−n c0+log k,

and the bound in Theorem 4.1 guarantees that E(a)−h(Ω, a/k) > 0 for αk ≤ a ≤ (1−Ω)k.

4.4.2 Proof of Lemma 4.4

For a given set (n, k, m, α, SNR(Xn), g(u,Xn)) we derive an upper bound on Pe(α) for the ML
decoder. In particular, we analyze Pe(α|K), the error conditioned on the true set K. Because
of the symmetry in the sampling procedure, we will see that the conditional probability does
not depend on the particular set K. Therefore for any distribution over K we have

Pe(α) =
∑

K: |K|=k

P(K)Pe(α|K) = Pe(α|K).
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Analysis of ML Decoder

As is shown in [23], the ML decoder in Lemma 4.2 can be written explicitly as a single
minimization. For any subset U with |U | = k < m the m × k matrix ΦU has full rank with
probability one. Thus we may define the following orthogonal projections

ΠU = ΦU [ΦT
UΦU ]−1ΦT

U (4.16)

Π⊥
U = I − ΦU [ΦT

UΦU ]−1ΦT
U . (4.17)

corresponding to the range (respectively null) space of ΦU . The ML decoder can now be
given as

K̂ML = arg min
|U |=k

err(U). (4.18)

where err(U) = 1
σ2

w

||Π⊥
Uy||2.

Analysis of Error

Let a∗ = ⌊αk⌋ and consider the sets

G = {U : |U | = k, |U ∩ K| > k − a∗}
B = {U : |U | = k, |U ∩ K| ≤ k − a∗}

where G represents the “good” set of candidate supports and B represents the “bad” set.
An error is declared if K̂ ∈ B and this occurs if and only if

min
U∈B

err(U) < min
V ∈G

err(V ).

To develop a bound on the above event, we split it into to sub-events which can be analyzed
independently. For any scalar t we define to the the following two “bad” events

AB =

{

min
U∈B

err(U) < t

}

, AG =

{

min
V ∈G

err(V ) > t

}

.

Note that Ac
B ∩Ac

G is a sufficient condition for success. Accordingly, the probability of error
can be bounded as

Pe(a
∗|K) ≤ 1 − P (Ac

B ∩ Ac
G)

= P (AB ∪ AG)

≤ P (AB) + P (AG)

Our proof proceeds by relating P(AB) and P(AB) to the the cumulative distribution functions
of various χ2 variables.
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Bounding P(AG)

To tightly characterize the behavior of minV ∈G err(V ) would require significant effort. How-
ever, since it is always true that K ∈ G, it is sufficient to consider the weakened bound
P(AG) ≤ P(err(K) > t). Since w has zero mean i.i.d. Gaussian elements, and Π⊥

K is an
orthonormal projection matrix, the random variable

err(K) =
1

σ2
w

||Π⊥
Ky||2 =

1

σ2
w

||Π⊥
Kw||2.

has a χ2 distribution with m − k degrees of freedom (Lemma A.2).

Bounding P(AB)

To bound the probability that minU∈B err(U) < t, it is sufficient to bound err(U) for every
possible U ∈ B. At a high level, our approach to this task is to repeatedly partition AB into
smaller sub-events whose behavior we can characterize with respect to χ2 variables. Then,
repeated application of the union bound lead a bound on our desired quantity P (AB).

We begin by partitioning U ∈ B based on the size of the overlap k − a = |U ∩ K|. Let

B̃(a) = {U : |U | = k, |U ∩ K| = k − a},

AB̃(a) =

{

min
U∈B̃(a)

err(U) < t

}

.

Then, the union bound gives

P(AB) ≤
amax
∑

a=a∗

P(AB̃(a)). (4.19)

where amax = ⌈k − k2/n⌉. Accordingly, the next step is to bound the event P(AB̃(a)) for all
a∗ ≤ a ≤ amax.

Bounding P(AB̃(a))

For any U ∈ B̃(a) the distribution of err(U) can be characterized with respect to two
quantities. First, conditioned on the set K\U , the magnitude of the “missed” components
of x is given by SNR(xK\U). Second, for any set U the magnitude of the projected noise is
given by

Λ(U) =
1

σ2
w

||Π⊥
Uw||2.

Since w is a Gaussian vector with i.i.d. elements and Π⊥
K is an orthonormal projection

matrix, Λ(U) is a χ2 random variable with m − k degrees of freedom (Lemma A.2).
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Now, conditioned on SNR(xK\U) = θ the random vector (σ2
wθ)−1/2 ΦK\UxK\U has i.i.d.

zero mean Gaussian elements with variance one. If we also condition on Λ(U) = λ, then we
see that

1

θ
err(U) =

1

σ2
wθ

||Π⊥
U

(

ΦK\UxK\U + w
)

||2

is a non-central χ2
NC variable with non-centrality parameter λ/θ and m−k degrees of freedom

due to the orthogonal projection Π⊥
U (Lemma A.2). This means that

P
{

err(U) < t
∣

∣SNR(xK\U) = θ, Λ(U) = λ
}

= P
{

χ2
NC(m − k, λ/θ) < t/θ

}

(4.20)

To reduce amount of conditioning required in (4.20) we use Lemma A.3 which states
the the cumulative distribution function of non-central χ2 variable is decreasing the non-
centrality parameter. Noting that Λ(U) ≥ 0 we have

P
{

err(U) < t
∣

∣SNR(xK\U) = θ
}

≤ P
{

χ2
NC(m − k, 0) < t/θ

}

= P
{

χ2(m − k) < t/θ
}

,

and so

P
{

err(U) < t
∣

∣SNR(xK\U) ≥ θ
}

≤ P
{

χ2(m − k) < t/θ
}

.

By our assumptions we have

P
{

min
U∈B̃(a)

SNR(xK\U) < 1/τ(a)
}

≤ e−n c0

where τ(a) =
[

SNR(X )(a/k)g(a/k,X )
]−1

. Thus, the union bound gives

P
{

AB̃(a)

}

≤ e−n c0 +
∑

U∈B̃(a)

P
{

χ2(m − k) < τ(a)t
}

= e−n c0 +

(

k

a

)(

n − k

a

)

P
{

χ2(m − k) < τ(a)t
}

.

4.4.3 Proof of Lemma 4.3

We are given xK ∼ N (0, σ2
xIk) and an = ⌈αkn⌉. If we let a = ⌈αkn⌉ and C̃(a) = {U ⊂ K :

|U | = a}, then by definition we have

g(α, x) = min
U∈C̃(a)

k σ2
x

||xK ||2
||xU ||2
aσ2

x

We note that the variable ||xK ||2/σ2
x is χ2 with k degrees of freedom and, for each set U ,

the variable ||xU ||2/σ2
x is χ2 with a degrees of freedom. Although these variable are not
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independent, we can use the union bound to bound g(α, x) in terms of independent events.
For any ǫ1, ǫ2 > 0 we have

P
{

g(α, x) < (1 − ǫ1)(1 − ǫ2)
}

≤ P{||xK ||2/σ2
x < (1 − ǫ1)k}

+
∑

U∈C̃(a)

P{||xU ||2/σ2
x ≤ (1 − ǫ2)a}

= P{χ2(k) < (1 − ǫ1)k}
+ |C̃(a)|P{χ2(a) ≤ (1 − ǫ2)a}

Using concentration bounds for central χ2 variables (Lemma A.1) we may set ǫ1 arbitrarily
close to zero. Furthermore, we note that |C̃(a)| =

(

k
a

)

. As n → ∞ this means that

−1

n
log
(

|C̃(a)|P{χ2(a) ≤ (1 − ǫ2)a}
)

≤ E0(Ω, ǫ, ρ)

where

E0(Ω, ǫ, ρ) = Ωα
1

2
[− log(1 − ǫ2) + ǫ2] − Ωh(α).

Solving for the critical value of ǫ2 such that limn→∞ E0(Ω, ǫ, ρ) > 0 leads to the stated bound.
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Chapter 5

Signal Estimation: Effects of Noise

Prior to Sampling

While Chapters 3 and 4 were concerned with support recovery, the focus of this chapter
is signal recovery. Our goal is to understand how the distortion, measured by the mean
squared error (MSE), is affected by where the noise enters into the sampling processes. We
compare two noise models: the standard model in which the noise is added to each sample,
and a variation in which the noise is added to the signal x prior to sampling. For stochastic
signal classes we derive closed-form expressions for the distortion of the linear minimal mean
squared error (LMMSE) estimator that has a priori knowledge of the support. Section 5.1
describes the noise models, Section 5.2 describes the LMMSE estimator, Section 5.3 gives
our results, Section 5.4 provides discussion, and proofs are given in section 5.5.

5.1 Observation Error versus Sampling Error

In this chapter we make a distinction between noise that is added to each sample (sampling
error) and noise that is added to the signal prior to sampling (observation error). Accordingly
we generalize the sampling model proposed in Chapter 2, to the following

y = Φ(x + wobs) + wsmp (5.1)

where wobs is observation error and wsmp is sampling error and all other assumptions about
Φ and K are the same.

To motivate these sources of noise, we consider the sensor network application introduced
in Section 1.3. Figure 5.1 below shows the same sensor network with the source of observation
noise and sampling noise made explicit. In this context, the observation noise arises from
the noise and quantization of the sensor reading itself. The sampling noise arises from the
computation and communication over the network, and any subsequent quantization.

To understand the relative tradeoff of the two error types we consider samples taken with
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Figure 5.1: Sparse signal sampling using a sensor network with observation and sampling
error

only one kind of error, that is

yobs = Φ(x + wobs) (5.2)

ysmp = Φx + wsmp (5.3)

where both wobs ∈ Rn and wobs ∈ Rm have i.i.d. elements with zero mean and variance
σ2

w. Note that elements of the random vector Φwobs also have variance σ2
w but are not

independent. We consider any stochastic signal class X in which the non-zero elements are
i.i.d. with zero mean and variance σ2

x. Thus throughout this chapter β = β(X ) = σ2
x/σ

2
w.

Finally, we do not constrain our our analysis to the under-sampled setting and consider any
ρ ≥ 0.

5.2 Optimal Linear Estimator

In this section we consider estimation of the signal x when the support K is known. This is
interesting when K can be accurately determined or when K is known a priori but there is
no control over how the samples are taken. Additionally, the analysis of this case shows the
fundamental differences between the types of noise regardless of uncertainty in the support.
Finally, we note that for the Gaussian class G the LMMSE estimator is the optimal MSE
estimator. For results concerning a sub-optimal efficient ℓ1 constrained estimator without
knowledge of the true support see [27].

Conditioned on a particular sampling matrix Φ and support K, let Σx, Σy, and Σxy

denote the covariance and cross correlation matrices of x and y. It is well known that the
LLMSE linear estimator is given by

x̂(y|K) = ΣxyΣ
−1
y y. (5.4)

Moreover, the conditional distortion is given by

D(X |K, Φ) =
1

kσ2
x

E[||x − x̂(y|K)||2] =
1

kσ2
x

tr
{

Σx − ΣxyΣ
−1
y Σyx

}

(5.5)
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Hence, for a given sampling problem the distortion is given by

D(X ) = E[D(X |K, Φ)]. (5.6)

5.3 Results

We give a closed form expression for the MSE distortion of LMMSE estimator for both sam-
pling error and observation error. Our results are formulated in terms of the η-transform of
the asymptotic spectra of the Wishart and F matrices (see Appendix C for more informa-
tion).

Theorem 5.1. Let X be a stochastic signal whose non-zero elements are i.i.d. with zero
mean and variance σx. For sparsity Ω ∈ (0, 1) and sampling rate ρ consider the distortion
of the linear minimum mean squared estimator. Under the influence of sampling noise i.i.d.
with zero mean and variance σ2

w the distortion is given by

Dsmp(X ) = ηWS

(

ρβ; ρ
Ω

)

, (5.7)

where β = σ2
x/σ

2
w and ηWS(x; r) is given by Lemma B.4. Under the influence of observation

noise i.i.d. with zero mean and variance σ2
w the distortion is given by

Dobs(X ) =















β
1+β

[

1
β

+ ηFM

(

Ω
1−Ω

(β + 1); ρ
Ω
, ρ

1−Ω

)

]

0 ≤ ρ < 1 − Ω

β
1+β

[

1
β

+ 1−ρ
Ω

ηFM

(

1−ρ
ρ

(β + 1); 1−Ω
1−ρ

, 1−Ω
ρ

)]

1 − Ω ≤ ρ < 1

1/(1 + β) 1 ≤ ρ

(5.8)

where β = σ2
x/σ

2
w and ηFM(x; r1, r2) is given by Lemma B.5.

5.4 Discussion

The distortions in Theorem 5.1 are shown in the following figures. Figure 5.2 shows log10 D
as a function of ρ for various Ω, Figure 5.3 shows log10 D as a function of ρ for various β,
and Figure 5.4 shows log10 D as a function of Ω for various scalings of ρ(Ω).

The results are in line with our intuition. For ρ < 1 the noise due to observation noise
is correlated and is less detrimental to recovery. On the other hand, for ρ > 1, Dobs remains
constant whereas Dsmp → 0 as ρ → ∞. Figure 5.3 shows that these results are consistent
for a range of SNR. We remark that in all cases, the differences between the types of noise
becomes very small as Ω becomes small. This occurs because ηFM(β) → ηWM(β), as the
ratio r2 of the F -Matrix goes to zero.
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Figure 5.2: The distortion, log10 D, as a function of ρ for various Ω and β = 100 under
sampling noise (solid) and observation noise (dashed).
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Figure 5.3: The distortion, log10 D, as a function of ρ for various β and Ω = 0.4 under
sampling noise (solid) and observation noise (dashed).

5.5 Proofs

The first step toward calculating the distortion is to recast the conditional distortion (5.6)
in terms of a single random matrix. Under the sampling error model we have

Σx = σ2
xIn Σy = σ2

xΦKΦT
K + σ2

wIm Σxy = ΦT
K .
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Figure 5.4: The distortion, log10 D, as a function of Ω for various linear scalings of ρ and Ω
for β = 100 under sampling noise (solid) and observation noise (dashed).

and thus

Dsmp(X |K, Φ) =
1

k
tr
{

In − ΦT
K(ΦKΦT

K + (1/β)I)−1ΦK

}

(5.9)

=
1

k
tr
{

(Ik + βΦT
KΦK)−1

}

. (5.10)

where ( n
m

)ΦT
KΦK is a central Wishart matrix.

Under the observation error model we have

Σx = σ2
xIn Σy = σ2

xΦKΦT
K + σ2

wΦK⊥ΦT
K⊥ Σxy = ΦT

K .

and thus

Dsmp(X |K, Φ) =
1

k
tr
{

In − ΦT
K(ΦKΦT

K + (1β)ΦK⊥ΦT
K⊥)−1ΦK

}

(5.11)

To simplify the above equation we must consider whether or not the covariance matrix
Σw′ = ΦK⊥ΦT

K⊥ corresponding to ΦK⊥wobs,Kc is invertible. For m < n − k, the matrix Σw′

is full rank and the resulting conditional distortion is

Dobs,1(X |K, Φ) =
β

1 + β

[

1

β
+

1

k
E tr

{

(

Ik + (1 + β)ΦT
KΣ−1

w′ ΦK

)−1
}

]

(5.12)

where (n−k
k

)ΦT
KΣ−1

w′ ΦK is a central F matrix.
For n − k < m < n, the matrix Σw′ has rank n − k and is not invertible. The distortion

can be determined using Σ̃w′ = ΦT
K⊥ΦK⊥ which has the same non-zero eigenvalues as Σw′,
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and an n− k × n−m random matrix G whose i.i.d. elements have the same distribution as
the elements of Φ. The conditional distortion is equal in distribution to the following

Dobs,2
d
=

β

1 + β

[

1

β
+

1

k
E tr

{

(

Im−n + (1 + β)G∗T̃−1G
)−1
}]

. (5.13)

where ( m
m−n

)GT Σ̃−1
w′ G is a central F matrix. Finally, for m ≥ n, the matrix Φ is invertible

and the distortion is simply 1/(1 + β).
The next step involves evaluating the expectations of the conditional distortions given in

(5.10), (5.12), and (5.13). We use the following fact.

Lemma 5.1. For a nonnegative definite matrix M ∈ Bn×n let λ1(M), · · ·λn(M) denote the
eigenvalues of M and let F n

M (x) denote the empirical eigenvalue distribution (B.1). For
γ ≥ 0 we have

1

n
tr
{

(I + γM)−1
}

=
n
∑

i=1

1

1 + γλi(M)
(5.14)

=

∫ ∞

0

1

1 + γx
d F n

M(x) (5.15)

Proof. This follows from the properties of the trace.

We are interested in the asymptotic limits as n, k, m → ∞ with k/n → Ω and m/n → ρ.
In this setting, it has been shown that for both both the Wishart [26] and F matrices [28] the
empirical probability distributions converge to non-random continuous functions with closed
form expressions which are given in Lemmas B.1 and B.2. This means that the conditional
distributions (5.10), (5.12), and (5.13) converge to some non-random quantity. Moreover,
this quantity, which corresponds to the η-transform (defined in appendix B), has a closed
from solution for Wishart matrix and the F matrix. To conclude we note that as n → ∞,

Dsmp(X |K, Φ) → ηWS

(

ρβ; ρ
Ω

)

(5.16)

Dobs,1(X |K, Φ) → β

1 + β

[

1

β
+ ηFM

(

Ω

1 − Ω
(β + 1);

ρ

Ω
,

ρ

1 − Ω

)]

(5.17)

Dobs,2(X |K, Φ) → β

1 + β

[

1

β
+

1 − ρ

Ω
ηFM

(

1 − ρ

ρ
(β + 1);

1 − Ω

1 − ρ
,
1 − Ω

ρ

)

.

]

. (5.18)

where ηWS(γ; r) and ηFM(x; r1, r2) are given by Lemmas B.4 and B.5.
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Chapter 6

Conclusions and Future Work

Research over the past decade has changed what it means to “sample” a signal. The field
of compressed sensing in particular has focused on recovering sparse signals from a small
number of linear projections. In this thesis we have given fundamental limits on what can
and cannot be learned about an unknown signal when the samples, which consist of randomly
constructed linear projections, are corrupted by noise. Our contributions lie it two areas:
support recovery bounds and the effects of different noise models in signal estimation.

For the task of support recovery, Chapter 3 established that perfect recovery cannot be
achieved in the setting of linear sparsity unless the SNR grows without bound with the
signal dimension. This result is significant because it shows that, in many applications,
perfect support recovery is not attainable.

Next, we considered partial support recovery, and showed that it is possible to recover
some fraction of the support. Chapters 3 and 4 gave complementary necessary and sufficient
conditions on the number of samples and the SNR required to attain a desired accuracy.
The results of Chapter 3 gave an upper bound on the fraction of the support that can be
recovered by any estimation algorithm. The results of Chapter 4 gave a lower bound on the
fraction of the support that can be recovered using a particle maximum likelihood estimator.

Our results on partial support recovery quantify how much information about the sup-
port can be extracted from noisy linear projections. Unlike previous bounds which consid-
ered only perfect recovery, we are able derive achievable results for support recovery in the
under-sampled linear sparsity setting. Also, our results were developed in parallel for both
stochastic and non-stochastic signal models.

Our other contribution dealt with the effects of different noise models on the ability to
estimate a sparse signal. Chapter 5 compared the traditional sampling model, where noise is
added independently to each sample, to a model where noise is added to the signal prior to
sampling. We used results on the asymptotic spectrum of certain random matrices to derive
closed form expressions of the means squared error distortion for both models. Our results
showed that in the under-sampled setting, noise added prior to sampling is less detrimental
than noise added to the samples. Furthermore, the difference between the two types of noise
decreases as the unknown signal becomes sparser.

We recognize several directions for further work. One potentially useful extension of this
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thesis is to derive sufficient conditions, like those given in Chapter 4, that correspond to an
efficient estimation algorithm. The main drawback of the ML decoder we analyzed is that it
is computationally hard, and is thus not practical in many settings. One way this analysis
might be achieved, is to bound the performance of some efficient estimator with respect to
the ML estimator. In conjunction with the results of Chapter 4, such an approach would
yield an achievable result for the efficient estimator.

Next, we note that our primary motivation for using a gaussian sampling matrix was that
it simplified our analysis. In general, however, it would be interesting to see to what degree
our results hold for other matrix constructions. This would be particularly interesting for
matrices which arise naturally out of the physics of the sampling process, or for matrices
that are themselves sparse, and are thus easy to implement.

Finally, our results on signal estimation in Chapter 5 illustrate the impact of where the
noise enters into the samples. A natural extension is to see what effect noise added prior to
sampling has on the ability to recover some fraction of the support.
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Appendix A

Facts about Chi Squared Variables

In this appendix we provide a number of useful facts about χ2 random variables and prove
Lemmas that are used throughout the thesis. We begin with some standard definitions.

Definition A.1. Given d independent variables Xi ∼ N (µi, σ
2
i ), then

d
∑

i=1

(

Xi − µi

σi

)2

(A.1)

is a central χ2(d) variable with d degrees of freedom.

Remark A.1. The variable Z ∼ χ2(d) is non-negative, has mean d, and variance 2d. For
z ≥ 0 its probability density function is given by

fZ(z) =
zm/2−1e−d/2

2d/2Γ(d/2)
(A.2)

where Γ(s) =
∫∞

0
ts−1e−tdt is the Gamma function.

Definition A.2. Given d independent variables Xi ∼ N (µi, σ
2
i ) then

d
∑

i=1

(

Xi

σi

)2

(A.3)

is a non-central χ2
NC(d, ν) variable with d degrees of freedom and non-centrality parameter

ν =

d
∑

i=1

(

µi

σi

)2

(A.4)

Remark A.2. The variable Z ∼ χ2
NC(d, ν) is non-negative, has mean d + ν, and variance

2(d + 2ν). Let N ∼ Poisson(ν/2) then Q is equal in distribution to a central χ2 variable
Y ∼ χ2(d + 2N). Accordingly, its probability density function can be written in terms of
the central χ2 distribution as

fZ(q) =

∞
∑

i=0

e−ν/2(ν/2)i

i!
fχ2(d+2i)(z). (A.5)
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Next we will provide some useful properties. We start with large deviation bounds.

Lemma A.1. Given Z ∼ χ2(d) and any ǫ > 0 the following bounds hold

Pr{Z > (1 + ǫ)d} ≤ exp

(

−d

4
ǫ2

)

(A.6)

Pr

{

Z <
1

(1 + ǫ)
d

}

≤ exp

(

−d

2

[

log(1 + ǫ) − ǫ

1 + ǫ

])

(A.7)

Proof. This lemma follows from a Chernoff bound and the proof is outlined in [29]. Let Z
be a central χ2 variable with d degrees of freedom. For any µ < 0

Pr(Z ≤ z) = Pr(zµ(Z−z) ≥ 1).

By Markov’s inequality this means

Pr(Z ≤ z) ≤ inf
µ<0

E
[

eµ(Z−z)
]

= inf
µ<0

(1 − 2µ)−d/2 exp (−xµ)

= inf
µ<0

exp

(

−d
1

2
ln(1 − 2µ) − µz

)

(A.8)

The infimum occurs at µ = (1 − d/z)/2 and plugging this value into (A.8) results in the
lower tail bound (A.6). The well known upper tail bound (A.7) is proved in [29].

Lemma A.2. Given a p-dimensional random vector X ∼ N (0, I) and any p×p orthonormal
projection matrix Π with rank d and independent of X, then ||ΠX||2 ∼ χ2(d).

Proof. We can write Π = UT ΛU where Λ is a diagonal matrix with exactly k ones and p− k
zeros and UT U = I. Since U is orthonormal, the vector Y = UX is equal in distribution to
X. Thus we have

||Ux||2 =

p
∑

i=1

Y T Y λi =
∑

i : λi 6==0

Y 2
i (A.9)

which is χ2 with d degrees of freedom because Yi are independently distributed N (0, 1).

Lemma A.3. The cumulative distribution function of a non-central χ2
NC variable is decreas-

ing in the non-centrality parameter ν, that is, for any integer d > 0 and scalars x, ν ′ ≥ ν ≥ 0
we have

Pr
{

χ2
NC(d, ν ′) < x

}

≤ Pr
{

χ2
NC(d, ν) < x

}

(A.10)

50



Proof. Let Q(x; d, ν) = Pr {χ2
NC(d, ν ′) < x} and let F (x; d) = Pr {χ2(d) < x}. Note that

Q(x; d, ν) can be written in terms of F (x; ·) as

Q(x; d, ν) =

∞
∑

j=0

e−ν/2 (ν/2)j

j!
F (x; d + 2j)

Taking the partial derivative with respect to ν gives

∂

∂ν
Q(x; d, ν) =

1

2

∞
∑

j=0

e−ν/2 (ν/2)j

j!

[

F (x; d + 2 + 2j) − F (x; d + 2j)
]

Since F (x; d) is strictly decreasing in d the above quantity is strictly negative. Thus,
Q(x; d, ν) is strictly decreasing in ν.

The following lemma is a counterpart to a large deviation bound. Roughly speaking, it
will be used to bound a non-central χ2

NC(d, d2) variable a distance of d away from its mean.

Lemma A.4. Given any τ, γ1 < ∞ and γ2 > 0 there exists a constant c > 0 and integer
M < ∞ such that for all t ∈ [0, τ ] and m ≥ M the probability distribution function of the
non-central χ2

NC variable Z ∼ χ2
NC(m, γ1 + γ2m

2) is bounded as

fZ(E[Z] − t · m) >
c0

m
(A.11)

Proof. Let N ∼ Poisson((γ1m + γ2m
2)/2) and let P = m + 2N . Then, the pdf of Z can be

written as

fZ(z) = EP

[

zP/2−1e−z/2

2P/2Γ(P/2)

]

= EP

[

1

2Γ(P/2)
exp

{(

P

2
− 1

)

log
(z

2

)

− z

2

}]

. (A.12)

Using Stirling’s approximation, Γ(s) =
√

2πe−s+ν/sss−1/2 with |ν| < 1/12, gives

fZ(z) ≥ EP

[

1√
4πP

exp

{

−
(

P

2
− 1

)

log

(

P

z

)

+
P − z

2
− 1

6P

}]

.

Using the bound log(s) ≤ s − 1 gives

fZ(z) ≥ EP

[

1√
4πP

exp

{

−
(

P

2
− 1

)(

P − z

z

)

+
P − z

2
− 1

6P

}]

> EP

[

1√
4πP

exp

{

−(P − z)2

2z
− 1

6P

}]

.

Note that E[P ] = E[Z] = (1 + γ1)m + γ2m
2. Thus, with the substitution z = E[Z] − t m we

have

fZ(E[Z] − t m) ≥ EP

[

1√
4πP

exp

{

−(P − E[P ] + t m)2

2(E[P ] − t m)
− 1

6P

}]

.
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Using standard concentration results for Poisson random variable [30], there exists some
constant c0 > 0 and integer M0 < ∞ such that, for all m ≥ M0 the following bound holds

Pr{|P − E[P ]| < 2 m} > c0. (A.13)

Accordingly, for m ≥ M0 we have

fZ(E[Z] − t m) ≥ C1 exp{−C2}

where

C1 =
c0

√

4π[(3 + γ1)m + γ2m2]

C2 =
(2 + t)2m

2[(1 + γ1 − t)m + γ2m2]
+

1

6[(1 + γ1)m + γ2m2]

Given τ , we may choose some M ≥ M1 and constants c1 > 0 and c2 < ∞ such that for all
m > M we have

C1 ≥
c1

m
,

C2 ≤ c2

for all t ∈ [0, τ ]. With c = c1e
−c2 we conclude our proof.
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Appendix B

The Asymptotic Spectrum of Random

Matrices

In this appendix we provide results about the limiting eigenvalue distribution of two matrices
that arise from our sampling model. With the exception of Lemma B.5, this is a compilation
of known results (see [31] for more information). In general these results hold for complex
matrices, but for simplicity we consider only real matrices.

We begin with the definitions of the central Wishart and central F matrices.

Definition B.1. Let H ∈ Rm×k have zero mean i.i.d. entries with variance one. The k × k
matrix ( 1

m
)HT H is a central Wishart matrix.

Definition B.2. Let H ∈ Rm×k and M ∈ Rm×p (m < p) have zero mean i.i.d. Gaussian
entries with unit variance. The k × k matrix ( 1

k
)HT ((1

p
)MMT )−1H is a central F matrix.

In many applications in signal processing and communications, the relevant performance
metrics only depend on the singular values of the matrix M , rather than on its more precise
structure. Accordingly, a great deal of research has focused on the behavior of the singular
values for certain random matrices. In this work, we need the distribution of the eigenvalues
(i.e. the spectrum) for the Wishart and F matrix. For an n × n matrix M the empirical
cumulative distribution of the eigenvalues is given by

F n
M (x) =

1

n

n
∑

i=1

1{λi(M) ≤ x} (B.1)

where λ1(M), · · ·λn(M) are the eigenvalues of M and 1{·} is the indicator function. A
remarkable fact about the matrices we are interested in, is that their empirical distributions
converge to a non-random continuous function as n → ∞. For the Wishart matrix this is
the classic Marcenko-Pastur law [26] and is given in Lemma B.1. For the F matrix this result
was shown by Silverstein [28] and is given in Lemma B.2.
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Lemma B.1. Let H ∈ R
m×k have zero mean i.i.d. entries with variance one. If k/m → r

as k, m → ∞, then the empirical spectral density of the central Wishart matrix ( 1
m

)H∗H
converges to

fWS(x; r) =

(

1 +
1

r

)+

δ(x) +

√

(x − a)+(b − x)+

2πrx
(B.2)

with a = (1 −√
r)2, b = (1 +

√
b)2 and (x)+ = max{0, x}.

Lemma B.2. Let H ∈ Rm×k and M ∈ Cm×p (m < p) have zero mean i.i.d. Gaussian
entries with unit variance. If m/k → r1 and m/p → r2 ∈ (0, 1) as k, m, p → ∞, then the
empirical spectral density of the central F matrix ( 1

k
)H∗((1

p
)MM∗)−1H converges to

fFM(x; r1, r2) =

(

1 +
1

r1

)+

δ(x) +
(1 − r2)

√

(x − a)+(b − x)+

2πx(r1x + r2)
(B.3)

with

a =

(

1 −
√

1 − (1 − r1)(1 − r2)

1 − r2

)2

b =

(

1 +
√

1 − (1 − r1)(1 − r2)

1 − r2

)2

In typical applications involving a random matrix M the properties of interest depend on
the expected value of some function of M . The following two transforms are taken directly
from [31] and are useful for many problems in signal processing and communications.

Definition B.3. Given a nonnegative variable X and γ ≥ 0 the Shannon transform is

VX(γ) =
1

2
E [log(1 + γX)] (B.4)

Definition B.4. Given a nonnegative variable X and γ ≥ 0 the η-transform is

ηX(γ) = E

[

1

1 + γX

]

(B.5)

The following lemmas provide the transforms necessary for this thesis. Lemmas B.4
and B.4 are taken from [31] whereas Lemma B.4 is, to our knowledge, the first closed form
expression of the η-transform for the F-matrix.

Lemma B.3. The Shannon transform of the distribution fWS(x; r) is given by

VWS(γ; r) = log
(

1 + γ − F1(γ, r)
)

+
1

r
log
(

1 + rγ − F1(γ, r)
)

+
1

rγ
F1(γ, r) (B.6)

with

F1(γ, r) =
1

4

(

√

γ(1 +
√

r)2 + 1 −
√

γ(1 −√
r)2 + 1

)2

. (B.7)
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Lemma B.4. The η-transform of the distribution fWS(x; r) is given by

ηWS(γ; r) = 1 − 1

rγr
F1(γ, r) (B.8)

where F1(γ, r) is given by (B.7).

Lemma B.5. The η-transform of the distribution fFM(x; r1, r2) is given by

ηFM(γ, r1, r2) =
1

1 − r2
+

(

γ

γ − r2/r1

)

F2(γ) +

(

r2/r1

r2/r1 − γ

)

F2(r2/r1) (B.9)

with

a =

(

1−
√

1−(1−r1)(1−r2)

1−r2

)2

b =

(

1+
√

1−(1−r1)(1−r2)

1−r2

)2

F2(x) =
1 − r1

2
− 1

1 − r2

+
1 − r2

2x
(
√

(1 + ax)(1 + bx) − 1).

Proof. The key to solving this nontrivial integration problem is to use the substitution x =
1 + c − 2

√
c cos u for a properly chosen value of c.
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